2,371 research outputs found

    Computational study on microstructure evolution and magnetic property of laser additively manufactured magnetic materials

    Full text link
    Additive manufacturing (AM) offers an unprecedented opportunity for the quick production of complex shaped parts directly from a powder precursor. But its application to functional materials in general and magnetic materials in particular is still at the very beginning. Here we present the first attempt to computationally study the microstructure evolution and magnetic properties of magnetic materials (e.g. Fe-Ni alloys) processed by selective laser melting (SLM). SLM process induced thermal history and thus the residual stress distribution in Fe-Ni alloys are calculated by finite element analysis (FEA). The evolution and distribution of the γ\gamma-Fe-Ni and FeNi3_3 phase fractions were predicted by using the temperature information from FEA and the output from CALculation of PHAse Diagrams (CALPHAD). Based on the relation between residual stress and magnetoelastic energy, magnetic properties of SLM processed Fe-Ni alloys (magnetic coercivity, remanent magnetization, and magnetic domain structure) are examined by micromagnetic simulations. The calculated coercivity is found to be in line with the experimentally measured values of SLM-processed Fe-Ni alloys. This computation study demonstrates a feasible approach for the simulation of additively manufactured magnetic materials by integrating FEA, CALPHAD, and micromagnetics.Comment: 20 pages, 15 figure

    A phase-field model of relaxor ferroelectrics based on random field theory

    Full text link
    A mechanically coupled phase-field model is proposed for the first time to simulate the peculiar behavior of relaxor ferroelectrics. Based on the random field theory for relaxors, local random fields are introduced to characterize the effect of chemical disorder. This generic model is developed from a thermodynamic framework and the microforce theory and is implemented by a nonlinear finite element method. Simulation results show that the model can reproduce relaxor features, such as domain miniaturization, small remnant polarization and large piezoelectric response. In particular, the influence of random field strength on these features are revealed. Simulation results on domain structure and hysteresis behavior are discussed and compared with related experimental results.Comment: 8 figure

    Multiscale examination of strain effects in Nd-Fe-B permanent magnets

    Full text link
    We have performed a combined first-principles and micromagnetic study on the strain effects in Nd-Fe-B magnets. First-principles calculations on Nd2Fe14B reveal that the magnetocrystalline anisotropy (K) is insensitive to the deformation along c axis and the ab in-plane shrinkage is responsible for the K reduction. The predicted K is more sensitive to the lattice deformation than what the previous phenomenological model suggests. The biaxial and triaxial stress states have a greater impact on K. Negative K occurs in a much wider strain range in the ab biaxial stress state. Micromagnetic simulations of Nd-Fe-B magnets using first-principles results show that a 3-4% local strain in a 2-nm-wide region near the interface around the grain boundaries and triple junctions leads to a negative local K and thus decreases the coercivity by ~60%. The local ab biaxial stress state is more likely to induce a large loss of coercivity. In addition to the local stress states and strain levels themselves, the shape of the interfaces and the intergranular phases also makes a difference in determining the coercivity. Smoothing the edge and reducing the sharp angle of the triple regions in Nd-Fe-B magnets would be favorable for a coercivity enhancement.Comment: 9 figure

    Insight into perovskite antiferroelectric phases: Landau theory and phase field study

    Full text link
    Understanding the appearance of commensurate and incommensurate modulations in perovskite antiferroelectrics (AFEs) is of great importance for material design and engineering. The dielectric and elastic properties of the AFE domain boundaries are lack of investigation. In this work, a novel Landau theory is proposed to understand the transformation of AFE commensurate and incommensurate phases, by considering the coupling between the oxygen octahedral tilt mode and the polar mode. The derived relationship between the modulation periodicity and temperature is in good agreement with the experimental results. Using the phase field study, we show that the polarization is suppressed at the AFE domain boundaries, contributing to a remnant polarization and local elastic stress field in AFE incommensurate phases

    Determination of optimal reversed field with maximal electrocaloric cooling by a direct entropy analysis

    Full text link
    Application of a negative field on a positively poled ferroelectric sample can enhance the electrocaloric cooling and appears as a promising method to optimize the electrocaloric cycle. Experimental measurements show that the maximal cooling does not appear at the zero-polarization point, but around the shoulder of the P-E loop. This phenomenon cannot be explained by the theory based on the constant total entropy assumption under adiabatic condition. In fact, adiabatic condition does not imply constant total entropy when irreversibility is involved. A direct entropy analysis approach based on work loss is proposed in this work, which takes the entropy contribution of the irreversible process into account. The optimal reversed field determined by this approach agrees with the experimental observations. This study signifies the importance of considering the irreversible process in the electrocaloric cycles

    Positive and negative electrocaloric effect in BaTiO3_3 in the presence of defect dipoles

    Full text link
    The influence of defect dipoles on the electrocaloric effect (ECE) in acceptor doped BaTiO3_3 is studied by means of lattice-based Monte-Carlo simulations. A Ginzburg-Landau type effective Hamiltonian is used. Oxygen vacancy-acceptor associates are described by fixed defect dipoles with orientation parallel or anti-parallel to the external field. By a combination of canonical and microcanoncial simulations the ECE is directly evaluated. Our results show that in the case of anti-parallel defect dipoles the ECE can be positive or negative depending on the density of defect dipoles. Moreover, a transition from a negative to positive ECE can be observed from a certain density of anti-parallel dipoles on when the external field increases. These transitions are due to the delicate interplay of internal and external fields, and are explained by the domain structure evolution and related field-induced entropy changes. The results are compared to those obtained by MD simulations employing an {\it{ab initio}} based effective Hamiltonian, and a good qualitative agreement is found. In addition, a novel electrocaloric cycle, which makes use of the negative ECE and defect dipoles, is proposed to enhance the cooling effect
    corecore